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Standard Model of global climate response to forcing

§ Linearization of global top-of-atmosphere (TOA) 
energy budget
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Global radiative forcing (F ) changes approximately linearly with time over the CO2

rampings, by about 3.7 Wm�2 per 70 yr, which is the period of CO2 doubling or halving

[Myhre et al., 1998]. The o↵set in Figure 1 between warming (red) and cooling (blue)

trajectories implies a lagged response of hemispheric-mean annual-mean surface tempera-

ture anomalies (�TNH and �TSH), as expected from deep ocean heat storage [e.g., Held et

al., 2010]. In order to approximately account for this lag, we consider the evolution of ice

area as a function of hemispheric temperature rather than time. A justification for this

treatment is that annual-mean Arctic sea ice area has been found to decline linearly with

increasing global-mean temperature across a range of GCMs, emissions scenarios, and

climates [Gregory et al., 2002; Ridley et al., 2008; Winton, 2006, 2008, 2011]. Specifically,

we extend the arguments of Winton [2011], relating hemispheric ice cover to global forcing

through

Q = �T + F +O(T 2) (1)

Tobs = 0.76± 0.11 �C

Hobs = 0.74± 0.08 Wm�2

Robs = 1.7 [0.7� 2.5] Wm�2

Tobs = 0.75± 0.12 �C

Hobs = 0.65± 0.16 Wm�2

Robs = 2.0 [1.4� 2.5] Wm�2

�OLR = �P�T0 (2)
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§ Equilibrium warming (Q=0) in response to a doubling of atmospheric CO2 (forcing  ≈ 3.7 Wm-2):

Standard Model of global climate response to forcing

§ Linearization of global top-of-atmosphere (TOA) 
energy budget
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Global radiative forcing (F ) changes approximately linearly with time over the CO2

rampings, by about 3.7 Wm�2 per 70 yr, which is the period of CO2 doubling or halving

[Myhre et al., 1998]. The o↵set in Figure 1 between warming (red) and cooling (blue)

trajectories implies a lagged response of hemispheric-mean annual-mean surface tempera-

ture anomalies (�TNH and �TSH), as expected from deep ocean heat storage [e.g., Held et

al., 2010]. In order to approximately account for this lag, we consider the evolution of ice

area as a function of hemispheric temperature rather than time. A justification for this

treatment is that annual-mean Arctic sea ice area has been found to decline linearly with

increasing global-mean temperature across a range of GCMs, emissions scenarios, and

climates [Gregory et al., 2002; Ridley et al., 2008; Winton, 2006, 2008, 2011]. Specifically,

we extend the arguments of Winton [2011], relating hemispheric ice cover to global forcing

through

Q = �T + F +O(T 2) (1)

Tobs = 0.76± 0.11 �C

Hobs = 0.74± 0.08 Wm�2

Robs = 1.7 [0.7� 2.5] Wm�2
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Estimating climate sensitivity should be easy... right?

§ All we need to do is estimate the net radiative feedback
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Estimating climate sensitivity should be easy... right?

§ Method #1: Get     from regression of against     over the CERES record
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Global radiative forcing (F ) changes approximately linearly with time over the CO2

rampings, by about 3.7 Wm�2 per 70 yr, which is the period of CO2 doubling or halving

[Myhre et al., 1998]. The o↵set in Figure 1 between warming (red) and cooling (blue)

trajectories implies a lagged response of hemispheric-mean annual-mean surface tempera-

ture anomalies (�TNH and �TSH), as expected from deep ocean heat storage [e.g., Held et

al., 2010]. In order to approximately account for this lag, we consider the evolution of ice

area as a function of hemispheric temperature rather than time. A justification for this

treatment is that annual-mean Arctic sea ice area has been found to decline linearly with

increasing global-mean temperature across a range of GCMs, emissions scenarios, and

climates [Gregory et al., 2002; Ridley et al., 2008; Winton, 2006, 2008, 2011]. Specifically,

we extend the arguments of Winton [2011], relating hemispheric ice cover to global forcing

through

Q = �T + F +O(T 2) (1)

Tobs = 0.76± 0.11 �C

Hobs = 0.74± 0.08 Wm�2

Robs = 1.7 [0.7� 2.5] Wm�2

Tobs = 0.75± 0.12 �C

Hobs = 0.65± 0.16 Wm�2

Robs = 2.0 [1.4� 2.5] Wm�2

�OLR = �P�T0 (2)
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§ All we need to do is estimate the net radiative feedback
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§ Conclusions up front: There are a variety of distinct radiative feedbacks governing Earth’s 
radiative response to warming, and feedback estimated from either method probably 
doesn’t provide a reliable estimate of the feedback governing long-term warming



Estimating climate sensitivity should be easy... right?

§ Method #1: Get     from regression of against     over the CERES record

§ Method #2:                                    , where      represents a change relative to pre-industrial 
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§ Conclusions up front: There are a variety of distinct radiative feedbacks governing Earth’s 
radiative response to warming, and feedback estimated from either method probably 
doesn’t provide a reliable estimate of the feedback governing long-term warming

§ Good news! CMIP5 models are generally consistent with radiative feedbacks 
estimated by either method when treated in a consistent way
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§ Conclusions up front: There are a variety of distinct radiative feedbacks governing Earth’s 
radiative response to warming, and feedback estimated from either method probably 
doesn’t provide a reliable estimate of the feedback governing long-term warming

§ Good news! CMIP5 models are generally consistent with radiative feedbacks 
estimated by either method when treated in a consistent way
§ Bad news! Poses a major challenge for constraining long-term warming from short 
climate records; CMIP5 models suggest feedbacks will change over time as the pattern 
of warming evolves, resulting in high ECS and large future warming
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climates [Gregory et al., 2002; Ridley et al., 2008; Winton, 2006, 2008, 2011]. Specifically,

we extend the arguments of Winton [2011], relating hemispheric ice cover to global forcing

through

Q = �T + F +O(T 2) (1)

Tobs = 0.76± 0.11 �C

Hobs = 0.74± 0.08 Wm�2

Robs = 1.7 [0.7� 2.5] Wm�2

Tobs = 0.75± 0.12 �C

Hobs = 0.65± 0.16 Wm�2

Robs = 2.0 [1.4� 2.5] Wm�2

�OLR = �P�T0 (2)

D R A F T November 15, 2016, 6:45pm D R A F T
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CERES-EBAF and NASA GISTEMP
March 2000 to November 2017

Radiative forcing (F) subtracted from 
global TOA radiation (Q) according to 
Donohoe et al (2014)
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Regressing monthly data
implies ECS = 3.1 K (2.0-7.6K, 5-95%)

(Forster & Gregory 2006, Murphy 2009, 
Trenberth et al 2010, Dessler 2010, 
Donohoe et al 2014, Zhou et al 2015) 
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Regressing annual data
implies ECS = 0.9 K (0.6-1.6K, 5-95%)

(Forster & Gregory 2006, Murphy 2009, 
Trenberth et al 2010, Dessler 2010, 
Donohoe et al 2014, Zhou et al 2015) 
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Regressing monthly data w/ 4 month lag 
implies ECS = 2.4 K (1.6-4.2K, 5-95%)

(Forster & Gregory 2006, Murphy 2009, 
Trenberth et al 2010, Dessler 2010, 
Donohoe et al 2014, Zhou et al 2015) 
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Feedback estimate 
sensitive to choice of:
• lag 
• averaging period
• record length
(Forster 2016)

Feedback value 
depends on source of 
stochastic forcing 
(oceanic vs radiative)
(Spencer & Braswell 
2010, 2011; Dessler 2011)

(Forster & Gregory 2006, Murphy 2009, 
Trenberth et al 2010, Dessler 2010, 
Donohoe et al 2014, Zhou et al 2015) 



CERES

GISTEMP

Q
-F

 (W
/m

2 )
T 

(K
)

Lagged-regression structure between Q and T

Feedback estimate 
sensitive to choice of:
• lag 
• averaging period
• record length
(Forster 2016)

Feedback value 
depends on source of 
stochastic forcing 
(oceanic vs radiative)
(Spencer & Braswell 
2010, 2011; Dessler 2011)

(Forster & Gregory 2006, Murphy 2009, 
Trenberth et al 2010, Dessler 2010, 
Donohoe et al 2014, Zhou et al 2015) 



Using models to understand regression structure

§ Long pre-industrial unforced 
control simulation of NCAR’s 
Community Earth System Model 
(CESM1) reproduces the salient 
features of observed regression 
structure with feedback 
dependence on:
• lag
• averaging period



Using models to understand regression structure

§ Long pre-industrial unforced 
control simulation of NCAR’s 
Community Earth System Model 
(CESM1) reproduces the salient 
features of observed regression 
structure with feedback 
dependence on:
• lag
• averaging period

§ Suggests that observed regression 
structure mainly reflects internal 
variability
§ We can use models to understand 
the regression structure
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§ Will each type of forcing engender the same radiative 
feedback? For this we need global climate models



CESM1 model hierarchy

§ Consider a hierarchy of CESM1 pre-industrial unforced control simulations

• OCN:  CAM5 w/dynamic ocean (CESM1)

• SOM:  CAM5 w/thermodynamic slab ocean

• fSST:    CAM5 w/fixed sea-surface temperatures

Atmosphere(Y), Slab(Y), ENSO(Y)

Atmosphere(Y), Slab(Y), ENSO(N)

Atmosphere(Y), Slab(N), ENSO(N)
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(in phase)

§ Note: Stochastic forcing 
comes from wind variability  
extracting energy from the 
ocean through turbulent 
fluxes (an ocean forcing); 
air temperature is strongly 
damped by turbulent heat 
fluxes



Slab ocean model simulation

ARMOUR ET AL.: SEA ICE REVERSIBILITY X - 3

1. Introduction

Q (1)

Frad (2)

Focn (3)

�T (4)

C
dT

dt
= Q+ Focn (5)

C
dT

dt
= �T + Frad + Focn (6)

T (7)

� =
�Q��F

�T
(8)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (9)

N2 = �g

⇢

d⇢

dz
(10)

D R A F T May 15, 2018, 3:25pm D R A F T

ARMOUR ET AL.: SEA ICE REVERSIBILITY X - 3

1. Introduction

Q (1)

Frad (2)

Focn (3)

�T (4)

C
dT

dt
= Q+ Focn (5)

C
dT

dt
= �T + Frad + Focn (6)

T (7)

� =
�Q��F

�T
(8)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (9)

N2 = �g

⇢

d⇢

dz
(10)

D R A F T May 15, 2018, 3:25pm D R A F T

ARMOUR ET AL.: SEA ICE REVERSIBILITY X - 3

1. Introduction

Q (1)

Frad (2)

Focn (3)

�T (4)

C
dT

dt
= Q+ Focn (5)

C
dT

dt
= �T + Frad + Focn (6)

T (7)

� =
�Q��F

�T
(8)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (9)

N2 = �g

⇢

d⇢

dz
(10)

D R A F T May 15, 2018, 3:25pm D R A F T

ARMOUR ET AL.: SEA ICE REVERSIBILITY X - 3

1. Introduction

Q (1)

Frad (2)

Focn (3)

�T (4)

C
dT

dt
= Q+ Focn (5)

C
dT

dt
= �T + Frad + Focn (6)

T (7)

� =
�Q��F

�T
(8)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (9)

N2 = �g

⇢

d⇢

dz
(10)

D R A F T May 15, 2018, 3:25pm D R A F T

ARMOUR ET AL.: SEA ICE REVERSIBILITY X - 3

1. Introduction

Q (1)

Frad (2)

Focn (3)

�T (4)

C
dT

dt
= Q+ Focn (5)

C
dT

dt
= �T + Frad + Focn (6)

T (7)

� =
�Q��F

�T
(8)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (9)

N2 = �g

⇢

d⇢

dz
(10)

D R A F T May 15, 2018, 3:25pm D R A F T

ARMOUR ET AL.: SEA ICE REVERSIBILITY X - 3

1. Introduction

Q (1)

Frad (2)

Focn (3)

�T (4)

C
dT

dt
= Q+ Focn (5)

C
dT

dt
= �T + Frad + Focn (6)

T (7)

� =
�Q��F

�T
(8)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (9)

N2 = �g

⇢

d⇢

dz
(10)

D R A F T May 15, 2018, 3:25pm D R A F T



Slab ocean model simulation

ARMOUR ET AL.: SEA ICE REVERSIBILITY X - 3

1. Introduction

Q (1)

Frad (2)

Focn (3)

�T (4)

C
dT

dt
= Q+ Focn (5)

C
dT

dt
= �T + Frad + Focn (6)

T (7)

� =
�Q��F

�T
(8)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (9)

N2 = �g

⇢

d⇢

dz
(10)

D R A F T May 15, 2018, 3:25pm D R A F T

ARMOUR ET AL.: SEA ICE REVERSIBILITY X - 3

1. Introduction

Q (1)

Frad (2)

Focn (3)

�T (4)

C
dT

dt
= Q+ Focn (5)

C
dT

dt
= �T + Frad + Focn (6)

T (7)

� =
�Q��F

�T
(8)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (9)

N2 = �g

⇢

d⇢

dz
(10)

D R A F T May 15, 2018, 3:25pm D R A F T

ARMOUR ET AL.: SEA ICE REVERSIBILITY X - 3

1. Introduction

Q (1)

Frad (2)

Focn (3)

�T (4)

C
dT

dt
= Q+ Focn (5)

C
dT

dt
= �T + Frad + Focn (6)

T (7)

� =
�Q��F

�T
(8)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (9)

N2 = �g

⇢

d⇢

dz
(10)

D R A F T May 15, 2018, 3:25pm D R A F T

ARMOUR ET AL.: SEA ICE REVERSIBILITY X - 3

1. Introduction

Q (1)

Frad (2)

Focn (3)

�T (4)

C
dT

dt
= Q+ Focn (5)

C
dT

dt
= �T + Frad + Focn (6)

T (7)

� =
�Q��F

�T
(8)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (9)

N2 = �g

⇢

d⇢

dz
(10)

D R A F T May 15, 2018, 3:25pm D R A F T

ARMOUR ET AL.: SEA ICE REVERSIBILITY X - 3

1. Introduction

Q (1)

Frad (2)

Focn (3)

�T (4)

C
dT

dt
= Q+ Focn (5)

C
dT

dt
= �T + Frad + Focn (6)

T (7)

� =
�Q��F

�T
(8)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (9)

N2 = �g

⇢

d⇢

dz
(10)

D R A F T May 15, 2018, 3:25pm D R A F T

ARMOUR ET AL.: SEA ICE REVERSIBILITY X - 3

1. Introduction

Q (1)

Frad (2)

Focn (3)

�T (4)

C
dT

dt
= Q+ Focn (5)

C
dT

dt
= �T + Frad + Focn (6)

T (7)

� =
�Q��F

�T
(8)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (9)

N2 = �g

⇢

d⇢

dz
(10)

D R A F T May 15, 2018, 3:25pm D R A F T

ARMOUR ET AL.: SEA ICE REVERSIBILITY X - 3

1. Introduction

Q (1)

Frad (2)

Focn (3)

�T (4)

C
dT

dt
= Q+ Focn (5)

C
dT

dt
= �T + Frad + Focn (6)

Q = �T (7)

Q = C
dT

dt
(8)

T (9)

� =
�Q��F

�T
(10)

D R A F T May 15, 2018, 3:38pm D R A F T

(in phase)High freq:

Fast mode 
with 
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with 

§ Note: Stochastic 
forcing for the 
”slow” mode comes 
from radiation, 
leading to different 
feedback estimate; 
air temperature is 
weakly radiatively
damped
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Modeling the lagged-regression

Stochastic linear energy 
balance model (EBM):

§ Fit to individual simulations 
(fSST, SOM, ENSO band) sums 
linearly to capture fully-
coupled simulation

§ Can be solved analytically 
to understand lagged-
regression structure



Modeling the lagged-regression

Stochastic linear energy 
balance model (EBM):

§ Fit to individual simulations 
(fSST, SOM, ENSO band) sums 
linearly to capture fully-
coupled simulation

§ Can be solved analytically 
to understand lagged-
regression structure

Regression slope at a given lag is:
• average of distinct feedbacks of different modes
• weighted by relative variance of each mode
• weighted by autocorrelation of each mode at 
the given lag 



Fixed SST simulation

Regression slope at a given lag is:
• average of distinct feedbacks of different modes
• weighted by relative variance of each mode
• weighted by autocorrelation of each mode at 
the given lag 
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Fixed SST has single mode:
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Slab ocean model simulation

Regression slope at a given lag is:
• average of distinct feedbacks of different modes
• weighted by relative variance of each mode
• weighted by autocorrelation of each mode at 
the given lag 
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Slab ocean is sum of two modes:

X - 4 ARMOUR ET AL.: SEA ICE REVERSIBILITY

�2 (11)

T1 + T2 (12)

Q1 +Q2 (13)

Q1 = �1T1 + Frad (14)

� =
�Q��F

�T
(15)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (16)

N2 = �g

⇢

d⇢

dz
(17)

OHT(y, t) = ⇢cp

Z x2

x1

Z 0

z
bot

v(x, y, z, t)✓(x, y, z, t)dzdx (18)

OHT0(y, t) = ⇢cp

Z x2

x1

Z 0

z
bot

v✓0dzdx

+ ⇢cp

Z x2

x1

Z 0

z
bot

v0✓dzdx

+ ⇢cp

Z x2

x1

Z 0

z
bot

v0✓0dzdx

(19)

D R A F T May 15, 2018, 11:07pm D R A F T

X - 4 ARMOUR ET AL.: SEA ICE REVERSIBILITY

�2 (11)

T1 + T2 (12)

Q1 +Q2 (13)

Q1 = �1T1 + Frad (14)

� =
�Q��F

�T
(15)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (16)

N2 = �g

⇢

d⇢

dz
(17)

OHT(y, t) = ⇢cp

Z x2

x1

Z 0

z
bot

v(x, y, z, t)✓(x, y, z, t)dzdx (18)

OHT0(y, t) = ⇢cp

Z x2

x1

Z 0

z
bot

v✓0dzdx

+ ⇢cp

Z x2

x1

Z 0

z
bot

v0✓dzdx

+ ⇢cp

Z x2

x1

Z 0

z
bot

v0✓0dzdx

(19)

D R A F T May 15, 2018, 11:07pm D R A F T

X - 4 ARMOUR ET AL.: SEA ICE REVERSIBILITY

�2 (11)

T1 + T2 (12)

Q1 +Q2 (13)

Q1 = �1T1 (14)

Q2 = �2T2 + Frad (15)

� =
�Q��F

�T
(16)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (17)

N2 = �g

⇢

d⇢

dz
(18)

OHT(y, t) = ⇢cp

Z x2

x1

Z 0

z
bot

v(x, y, z, t)✓(x, y, z, t)dzdx (19)

D R A F T May 15, 2018, 11:09pm D R A F T

X - 4 ARMOUR ET AL.: SEA ICE REVERSIBILITY

�2 (11)

T1 + T2 (12)

Q1 +Q2 (13)

Q1 = �1T1 (14)

Q2 = �2T2 + Frad / dT2

dt
(15)

� =
�Q��F

�T
(16)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (17)

N2 = �g

⇢

d⇢

dz
(18)

OHT(y, t) = ⇢cp

Z x2

x1

Z 0

z
bot

v(x, y, z, t)✓(x, y, z, t)dzdx (19)

D R A F T May 15, 2018, 11:12pm D R A F T



Regression dilution

Regression slope at a given lag is:
• average of distinct feedbacks of different modes
• weighted by relative variance of each mode
• weighted by autocorrelation of each mode at 
the given lag 

Slab ocean is sum of two modes:
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§ Temperature variance in one mode biases 
regression estimates for all (regression dilution)



Fully-coupled model simulation

Regression slope at a given lag is:
• average of distinct feedbacks of different modes
• weighted by relative variance of each mode
• weighted by autocorrelation of each mode at 
the given lag 

Lag (years)

Re
gr

es
sio

n 
slo

p
e 

(W
m

-2
K-

1 ) — CESM1
— EBM

Fully-coupled model is sum of (at least) three modes:
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Fully-coupled model simulation

Regression slope at a given lag is:
• average of distinct feedbacks of different modes
• weighted by relative variance of each mode
• weighted by autocorrelation of each mode at 
the given lag 
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Annual averaging preferentially eliminates fast, 
air-sea interaction mode
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Fully-coupled model simulation

Regression slope at a given lag is:
• average of distinct feedbacks of different modes
• weighted by relative variance of each mode
• weighted by autocorrelation of each mode at 
the given lag 
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While dynamics are well separated by time-
scale, variance and covariance (regression) 
amalgamate across time scales

Changing fractional variances & acf explains 
regression sensitivity to lag and sampling



Fully-coupled model simulation

Regression slope at a given lag is:
• average of distinct feedbacks of different modes
• weighted by relative variance of each mode
• weighted by autocorrelation of each mode at 
the given lag 

Air-sea forced
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Global warming

ARMOUR ET AL.: SEA ICE REVERSIBILITY X - 3

1. Introduction

Q (1)

Frad (2)

Focn (3)

�T (4)

C
dT

dt
= Q+ Focn (5)

C
dT

dt
= �T + Frad + Focn (6)

Q = �T (7)

Q = C
dT

dt
(8)

Q3(t) = �3T3(t� ✓) (9)

�1 = 1.2 (10)

D R A F T May 15, 2018, 11:40pm D R A F T

X - 4 ARMOUR ET AL.: SEA ICE REVERSIBILITY

�2 = 0.9 (11)

�3 = 2.7 (12)

T1 + T2 + T3 (13)

Q1 +Q2 +Q3 (14)

Q1 = �1T1 (15)

Q2 = �2T2 + Frad / dT2

dt
(16)

� =
�Q��F

�T
(17)

 (x, y) = T Y (x, y)(x� xE + xEe
��x/r) (18)

N2 = �g

⇢

d⇢

dz
(19)

OHT(y, t) = ⇢cp

Z x2

x1

Z 0

z
bot

v(x, y, z, t)✓(x, y, z, t)dzdx (20)

D R A F T May 15, 2018, 11:40pm D R A F T

CESM1 feedbacks 
(Wm-2K-1)
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While dynamics are well separated by time-
scale, variance and covariance (regression) 
amalgamate across time scales

Changing fractional variances & acf explains 
regression sensitivity to lag and sampling



Fully-coupled model simulation
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§ Lagged regression between TOA radiation and surface temperature can be 
understood as a superposition of linear modes, each with a distinct radiative feedback

§ Regression slope at a given lag is:
• average of distinct feedbacks of different modes
• weighted by relative variance of each mode
• weighted by autocorrelation of each mode at the given lag 

§ Regression slope is sensitive to lag and averaging period, and should not be expected 
to give an estimate of long-term feedback

§ Ongoing work:
• can feedbacks of individual modes be derived from observations?
• do any of the individual feedbacks correlate with long-term feedbacks across 
models? (potentially for an observational constraint on ECS)

• for how long will we have to observe before forced feedbacks emerge above 
internal variability? (estimate from Cristi: minimum ~25 years)
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Estimating climate sensitivity should be easy... right?

§ Method #1: Get     from regression of against     over the CERES record

§ Method #2:                                    , where      represents a change relative to pre-industrial 
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Global radiative forcing (F ) changes approximately linearly with time over the CO2

rampings, by about 3.7 Wm�2 per 70 yr, which is the period of CO2 doubling or halving

[Myhre et al., 1998]. The o↵set in Figure 1 between warming (red) and cooling (blue)

trajectories implies a lagged response of hemispheric-mean annual-mean surface tempera-

ture anomalies (�TNH and �TSH), as expected from deep ocean heat storage [e.g., Held et

al., 2010]. In order to approximately account for this lag, we consider the evolution of ice

area as a function of hemispheric temperature rather than time. A justification for this

treatment is that annual-mean Arctic sea ice area has been found to decline linearly with

increasing global-mean temperature across a range of GCMs, emissions scenarios, and

climates [Gregory et al., 2002; Ridley et al., 2008; Winton, 2006, 2008, 2011]. Specifically,

we extend the arguments of Winton [2011], relating hemispheric ice cover to global forcing

through

Q = �T + F +O(T 2) (1)

Tobs = 0.76± 0.11 �C

Hobs = 0.74± 0.08 Wm�2

Robs = 1.7 [0.7� 2.5] Wm�2

Tobs = 0.75± 0.12 �C

Hobs = 0.65± 0.16 Wm�2

Robs = 2.0 [1.4� 2.5] Wm�2

�OLR = �P�T0 (2)
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trajectories implies a lagged response of hemispheric-mean annual-mean surface tempera-

ture anomalies (�TNH and �TSH), as expected from deep ocean heat storage [e.g., Held et

al., 2010]. In order to approximately account for this lag, we consider the evolution of ice

area as a function of hemispheric temperature rather than time. A justification for this

treatment is that annual-mean Arctic sea ice area has been found to decline linearly with

increasing global-mean temperature across a range of GCMs, emissions scenarios, and

climates [Gregory et al., 2002; Ridley et al., 2008; Winton, 2006, 2008, 2011]. Specifically,

we extend the arguments of Winton [2011], relating hemispheric ice cover to global forcing

through

Q = �T + F +O(T 2) (1)

Tobs = 0.76± 0.11 �C

Hobs = 0.74± 0.08 Wm�2

Robs = 1.7 [0.7� 2.5] Wm�2

Tobs = 0.75± 0.12 �C

Hobs = 0.65± 0.16 Wm�2

Robs = 2.0 [1.4� 2.5] Wm�2

�OLR = �P�T0 (2)
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To the Editor — The rate of global 
mean warming has been lower over the 
past decade than previously. It has been 
argued1–5 that this observation might 
require a downwards revision of estimates 
of equilibrium climate sensitivity, that is, 
the long-term (equilibrium) temperature 
response to a doubling of atmospheric 
CO2 concentrations. Using up-to-date data 
on radiative forcing, global mean surface 
temperature and total heat uptake in the 
Earth system, we find that the global energy 
budget6 implies a range of values for the 
equilibrium climate sensitivity that is in 
agreement with earlier estimates, within 
the limits of uncertainty. The energy 
budget of the most recent decade does, 
however, indicate a lower range of values 
for the more policy-relevant7 transient 
climate response (the temperature increase 
at the point of doubling of the atmospheric 
CO2 concentration following a linear ramp 
of increasing greenhouse gas forcing) than 
the range obtained by either analysing the 
energy budget of earlier decades or current 
climate model simulations8.

The response of the climate system 
to rising greenhouse gas levels is often 
summarized in terms of the equilibrium 
climate sensitivity (ECS) or the transient 
climate response (TCR). Both quantities 
are related to the global mean temperature 
change9 ΔT, the radiative forcing change 
ΔF, and the change in the rate of the total 
increase in Earth system heat content ΔQ 
(see Supplementary Section S1), by the 
global energy budget:

(1)=ECS
F2x ΔT

ΔF–ΔQ

(2)=TCR
F2x ΔT

ΔF

where F2x is the forcing due to doubling 
atmospheric CO2 concentrations. We use 
a value of F2x of 3.44 W m–2 (with a 5–95% 
confidence interval of ±10%) from ref. 10. 
Using a higher estimate11 of 3.7 W m–2  
would shift up our estimated ranges for 
ECS and TCR, but only by about 0.1 K (see 
Supplement Section S2). Both equations (1) 
and (2) assume constant linear feedbacks 
and (2) further assumes that the ratio of 

ΔQ to ΔT for the observed period is the 
same as that at year 70 of a simulation in 
which atmospheric CO2 levels increase at 
1% per year6,12, which is approximately 
the case over the past few decades if we 
exclude periods strongly affected by 
volcanic eruptions (see Supplementary 
Fig. S2). Equation (1) provides a lower 
bound to the fully equilibrated sensitivity, 
because delayed ocean warming at high 
latitudes can mask the impact of local 
positive feedbacks13.

For ΔT, we use the HadCRUT4 
ensemble data set of surface temperatures 
averaged globally and by decade 
(Supplementary Fig. S1). For ΔQ, we 
derive annual estimates of the change in 
total heat content of the Earth system for 
the period 1970 to 2009, by combining 
data-based estimates for all the main 
components of the Earth system (ocean, 

continent, ice and atmosphere); the ocean 
component dominates the heat uptake 
(see Supplementary Section S1). For ΔF, 
we use the multi-model average of the 
CMIP5 ensemble of climate simulations10 
with emissions that follow a medium-to-
low representative concentration pathway 
(RCP4.5). We include the historic record 
from 1850–2005 and the RCP4.5 scenario 
values from 2006–2010, scaled to match 
an ensemble of possible forcing estimates 
for 2010 (see Supplementary Section S1) 
to adjust for fast feedbacks and capture 
uncertainties.

The most likely value of equilibrium 
climate sensitivity based on the energy 
budget of the most recent decade is 2.0 °C, 
with a 5–95% confidence interval of 
1.2–3.9 °C (dark red, Fig. 1a), compared 
with the 1970–2009 estimate of 1.9 °C 
(0.9–5.0 °C; grey, Fig. 1a). Including the 
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Figure 1 | Observations of the global energy budget and their implications. Observations of the global 
mean temperature change plotted against change in forcing minus heat uptake (ΔF–ΔQ) for the 
equilibrium climate sensitivity (ECS) (a) and against ΔF for the transient climate response (TCR) (b), 
for each of the four decades 1970s, 1980s, 1990s and 2000s and for the 40-year period 1970–2009. 
Ellipses represent likelihood contours enclosing 66% two-dimensional confidence regions; best-
fit points of maximum likelihood are indicated by the circles; and the curved thick and thin lines 
represent the 17–83% and 5–95% confidence intervals of the resulting one-dimensional likelihood 
profile in ECS (or TCR), respectively. All time periods are referenced to 1860–1879, including a small 
correction in ΔQ to account for disequilibrium in this reference period14. Straight contours show iso-
lines of ECS (a) and TCR (b), calculated using a best-fit value of F2x of 3.44 W m–2 (also adjusted for 
fast feedbacks)10. Uncertainty in F2x is assumed to be correlated with forcing uncertainty in long-lived 
greenhouse gases10. To avoid dependence on previous assumptions16, we report results as likelihood-
based confidence intervals.
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period from 2000 to 2009 into the 40-year 
1970–2009 period delivers a finite upper 
boundary, in contrast with earlier estimates 
calculated using the same method14. The 
range derived from the 2000s overlaps 
with estimates from earlier decades and 
with the range of ECS values from current 
climate models10 (ECS values in the CMIP5 
ensemble13 are 2.2–4.7 °C), although it 
is moved slightly towards lower values. 
Observations of the energy budget alone 
do not rule out an ECS value below 2 °C, 
but they do rule out an ECS below 1.2 °C 
with 95% confidence. The upper boundary 
is lowered slightly, but is also very sensitive 
to assumptions made in the evaluation 
process (see Supplementary Section 
S2). Uncertainties include observational 
errors and internal variability estimated 
from control simulations with general 
circulation models.

The best estimate of TCR based on 
observations of the most recent decade is 
1.3 °C (0.9–2.0 °C; dark red, Fig. 1b). This 
is lower than estimates derived from data 
of the 1990s (1.6 °C (0.9–3.1 °C); yellow, 
Fig. 1b) or for the 1970–2009 period as a 
whole (1.4 °C (0.7–2.5 °C); grey, Fig. 1b). 
However, because the most recent estimate 
has the strongest forcing and is less affected 
by the eruption of Mount Pinatubo in 1991, 
it is arguably the most reliable. Our results 
match those of other observation-based 
studies15 and suggest that the TCRs of some 
of the models in the CMIP5 ensemble10 
with the strongest climate response to 
increases in atmospheric CO2 levels may 
be inconsistent with recent observations — 
even though their ECS values are consistent 
and they agree well with the observed 
climatology. Most of the climate models 
of the CMIP5 ensemble are, however, 
consistent with the observations used here 
in terms of both ECS and TCR. We note, 
too, that caution is required in interpreting 

any short period, especially a recent one for 
which details of forcing and energy storage 
inventories are still relatively unsettled: 
both could make significant changes to the 
energy budget. The estimates of the effective 
radiative forcing by aerosols in particular 
vary strongly between model-based studies 
and satellite data. The satellite data are still 
subject to biases and provide only relatively 
weak constraints (see Supplementary 
Section S2 for a sensitivity study). ❐
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Global radiative forcing (F ) changes approximately linearly with time over the CO2

rampings, by about 3.7 Wm�2 per 70 yr, which is the period of CO2 doubling or halving

[Myhre et al., 1998]. The o↵set in Figure 1 between warming (red) and cooling (blue)

trajectories implies a lagged response of hemispheric-mean annual-mean surface tempera-

ture anomalies (�TNH and �TSH), as expected from deep ocean heat storage [e.g., Held et

al., 2010]. In order to approximately account for this lag, we consider the evolution of ice

area as a function of hemispheric temperature rather than time. A justification for this

treatment is that annual-mean Arctic sea ice area has been found to decline linearly with

increasing global-mean temperature across a range of GCMs, emissions scenarios, and

climates [Gregory et al., 2002; Ridley et al., 2008; Winton, 2006, 2008, 2011]. Specifically,

we extend the arguments of Winton [2011], relating hemispheric ice cover to global forcing

through

Q = �T + F +O(T 2) (1)

Tobs = 0.76± 0.11 �C

Hobs = 0.74± 0.08 Wm�2

Robs = 1.7 [0.7� 2.5] Wm�2

Tobs = 0.75± 0.12 �C

Hobs = 0.65± 0.16 Wm�2

Robs = 2.0 [1.4� 2.5] Wm�2

�OLR = �P�T0 (2)
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To the Editor — The rate of global 
mean warming has been lower over the 
past decade than previously. It has been 
argued1–5 that this observation might 
require a downwards revision of estimates 
of equilibrium climate sensitivity, that is, 
the long-term (equilibrium) temperature 
response to a doubling of atmospheric 
CO2 concentrations. Using up-to-date data 
on radiative forcing, global mean surface 
temperature and total heat uptake in the 
Earth system, we find that the global energy 
budget6 implies a range of values for the 
equilibrium climate sensitivity that is in 
agreement with earlier estimates, within 
the limits of uncertainty. The energy 
budget of the most recent decade does, 
however, indicate a lower range of values 
for the more policy-relevant7 transient 
climate response (the temperature increase 
at the point of doubling of the atmospheric 
CO2 concentration following a linear ramp 
of increasing greenhouse gas forcing) than 
the range obtained by either analysing the 
energy budget of earlier decades or current 
climate model simulations8.

The response of the climate system 
to rising greenhouse gas levels is often 
summarized in terms of the equilibrium 
climate sensitivity (ECS) or the transient 
climate response (TCR). Both quantities 
are related to the global mean temperature 
change9 ΔT, the radiative forcing change 
ΔF, and the change in the rate of the total 
increase in Earth system heat content ΔQ 
(see Supplementary Section S1), by the 
global energy budget:

(1)=ECS
F2x ΔT

ΔF–ΔQ

(2)=TCR
F2x ΔT

ΔF

where F2x is the forcing due to doubling 
atmospheric CO2 concentrations. We use 
a value of F2x of 3.44 W m–2 (with a 5–95% 
confidence interval of ±10%) from ref. 10. 
Using a higher estimate11 of 3.7 W m–2  
would shift up our estimated ranges for 
ECS and TCR, but only by about 0.1 K (see 
Supplement Section S2). Both equations (1) 
and (2) assume constant linear feedbacks 
and (2) further assumes that the ratio of 

ΔQ to ΔT for the observed period is the 
same as that at year 70 of a simulation in 
which atmospheric CO2 levels increase at 
1% per year6,12, which is approximately 
the case over the past few decades if we 
exclude periods strongly affected by 
volcanic eruptions (see Supplementary 
Fig. S2). Equation (1) provides a lower 
bound to the fully equilibrated sensitivity, 
because delayed ocean warming at high 
latitudes can mask the impact of local 
positive feedbacks13.

For ΔT, we use the HadCRUT4 
ensemble data set of surface temperatures 
averaged globally and by decade 
(Supplementary Fig. S1). For ΔQ, we 
derive annual estimates of the change in 
total heat content of the Earth system for 
the period 1970 to 2009, by combining 
data-based estimates for all the main 
components of the Earth system (ocean, 

continent, ice and atmosphere); the ocean 
component dominates the heat uptake 
(see Supplementary Section S1). For ΔF, 
we use the multi-model average of the 
CMIP5 ensemble of climate simulations10 
with emissions that follow a medium-to-
low representative concentration pathway 
(RCP4.5). We include the historic record 
from 1850–2005 and the RCP4.5 scenario 
values from 2006–2010, scaled to match 
an ensemble of possible forcing estimates 
for 2010 (see Supplementary Section S1) 
to adjust for fast feedbacks and capture 
uncertainties.

The most likely value of equilibrium 
climate sensitivity based on the energy 
budget of the most recent decade is 2.0 °C, 
with a 5–95% confidence interval of 
1.2–3.9 °C (dark red, Fig. 1a), compared 
with the 1970–2009 estimate of 1.9 °C 
(0.9–5.0 °C; grey, Fig. 1a). Including the 
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Figure 1 | Observations of the global energy budget and their implications. Observations of the global 
mean temperature change plotted against change in forcing minus heat uptake (ΔF–ΔQ) for the 
equilibrium climate sensitivity (ECS) (a) and against ΔF for the transient climate response (TCR) (b), 
for each of the four decades 1970s, 1980s, 1990s and 2000s and for the 40-year period 1970–2009. 
Ellipses represent likelihood contours enclosing 66% two-dimensional confidence regions; best-
fit points of maximum likelihood are indicated by the circles; and the curved thick and thin lines 
represent the 17–83% and 5–95% confidence intervals of the resulting one-dimensional likelihood 
profile in ECS (or TCR), respectively. All time periods are referenced to 1860–1879, including a small 
correction in ΔQ to account for disequilibrium in this reference period14. Straight contours show iso-
lines of ECS (a) and TCR (b), calculated using a best-fit value of F2x of 3.44 W m–2 (also adjusted for 
fast feedbacks)10. Uncertainty in F2x is assumed to be correlated with forcing uncertainty in long-lived 
greenhouse gases10. To avoid dependence on previous assumptions16, we report results as likelihood-
based confidence intervals.
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period from 2000 to 2009 into the 40-year 
1970–2009 period delivers a finite upper 
boundary, in contrast with earlier estimates 
calculated using the same method14. The 
range derived from the 2000s overlaps 
with estimates from earlier decades and 
with the range of ECS values from current 
climate models10 (ECS values in the CMIP5 
ensemble13 are 2.2–4.7 °C), although it 
is moved slightly towards lower values. 
Observations of the energy budget alone 
do not rule out an ECS value below 2 °C, 
but they do rule out an ECS below 1.2 °C 
with 95% confidence. The upper boundary 
is lowered slightly, but is also very sensitive 
to assumptions made in the evaluation 
process (see Supplementary Section 
S2). Uncertainties include observational 
errors and internal variability estimated 
from control simulations with general 
circulation models.

The best estimate of TCR based on 
observations of the most recent decade is 
1.3 °C (0.9–2.0 °C; dark red, Fig. 1b). This 
is lower than estimates derived from data 
of the 1990s (1.6 °C (0.9–3.1 °C); yellow, 
Fig. 1b) or for the 1970–2009 period as a 
whole (1.4 °C (0.7–2.5 °C); grey, Fig. 1b). 
However, because the most recent estimate 
has the strongest forcing and is less affected 
by the eruption of Mount Pinatubo in 1991, 
it is arguably the most reliable. Our results 
match those of other observation-based 
studies15 and suggest that the TCRs of some 
of the models in the CMIP5 ensemble10 
with the strongest climate response to 
increases in atmospheric CO2 levels may 
be inconsistent with recent observations — 
even though their ECS values are consistent 
and they agree well with the observed 
climatology. Most of the climate models 
of the CMIP5 ensemble are, however, 
consistent with the observations used here 
in terms of both ECS and TCR. We note, 
too, that caution is required in interpreting 

any short period, especially a recent one for 
which details of forcing and energy storage 
inventories are still relatively unsettled: 
both could make significant changes to the 
energy budget. The estimates of the effective 
radiative forcing by aerosols in particular 
vary strongly between model-based studies 
and satellite data. The satellite data are still 
subject to biases and provide only relatively 
weak constraints (see Supplementary 
Section S2 for a sensitivity study). ❐

References
1. Aldrin, M. et al. Environmetrics 23, 253–271 (2012).
2. Lewis, N. J. Clim. http://dx.doi.org/10.1175/JCLI-D-12-00473.1 

(2013).
3. Ring, M. J., Lindner, D., Cross, E. F. & Schlesinger, M. E. Atmos. 

Clim. Sci. 2, 401–415 (2012).
4. Stott, P. A., Good, P., Jones, G., Gillett, N. P. & Hawkins, E. Environ. 

Res. Lett. 8, 014024 (2013).
5. Schwartz, S. E. Surv. Geophys. 33, 745–777 (2012).
6. Gregory, J. M. & Forster, P. M. J. Geophys. Res. Atmos.  

113, D23105 (2008).
7. Allen, M. R. & Frame, D. J. Science 318, 582–583 (2007).
8. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. Bull. Am. Meteorol. Soc. 

93, 485–498 (2011).
9. Morice, C., Kennedy, J. J., Rayner, N. A. & Jones, P. D. J. Geophys. 

Res. http://dx.doi.org/10.1029/2011JD017187 (2013).
10. Forster, P. M. et al. J. Geophys. Res. Atmos. 118, 1–12 (2013).
11. Vial, J., Dufresne, J-L. & Bony, S. Clim. Dynam. http://dx.doi.

org/10.1007/s00382-013-1725-9 (2013).
12. Held, I. M. et al. J. Clim. 23, 2418–2427 (2010).
13. Armour, K. C., Bitz, C. M. & Roe, G. H. J. Clim. http://dx.doi.

org/10.1175/JCLI-D-12–00544.1 (2012).
14. Gregory, J. M., Stouffer, R. J., Raper, S. C. B., Stott, P. A. & Rayner, 

N. A. J. Clim. 15, 3117–3121 (2002)..
15. Gillett, N. P., Arora, V. K., Matthews, D. & Allen, M. R. J. Clim. 

http://dx.doi.org/10.1175/JCLI-D-12-00476.1 (2013).
16. Frame, D. J. et al. Geophys. Res. Lett. 32, L09702 (2005).

Author contributions
O.B., J.C., G.H., P.F., N.P.G., J.G., G.C.J., R.K., N.L., U.L., 
J.M., G.M., D.S., B.S., and M.R.A. conceived the analysis 
and designed the headline figure. P.M.F. provided the 
forcing data and estimates. G.C.J. provided the heat content 
data. A.O. conducted the analysis and produced the figures. 
A.O., F.E.L.O., M.R.A., P.M.F., O.B., and G.C.J contributed 
to writing the paper.

Additional information
Supplementary information is available in the online 
version of the paper.

Competing financial Interests
The authors declare no competing financial interests.

Alexander Otto1*, Friederike E. L. Otto1,  
Olivier Boucher2, John Church3, Gabi Hegerl4, 
Piers M. Forster5, Nathan P. Gillett6,  
Jonathan Gregory7, Gregory C. Johnson8,  
Reto Knutti9, Nicholas Lewis10, Ulrike Lohmann9, 
Jochem Marotzke11, Gunnar Myhre12,  
Drew Shindell13, Bjorn Stevens11  
and Myles R. Allen1,14

1Environmental Change Institute, University of 
Oxford, South Parks Road, Oxford, OX1 3QY, 
UK, 2Laboratoire de Météorologie Dynamique, 
IPSL/CNRS, UPMC, Paris, France, 3CSIRO 
Marine and Atmospheric Research Hobart, 
Castray Esplanade, Hobart Tasmani 7000, 
Australia, 4Grant Institute, University of 
Edinburgh, West Mains Road, Edinburgh EH9 
3JW, UK, 5School of Earth and Environment, 
University of Leeds, Leeds LS2 9JT, UK, 
6Canadian Centre for Climate Modelling and 
Analysis, PO Box 3065 STNCSC, Victoria, 
British Columbia, Canada, 7Department 
of Meteorology, University of Reading, PO 
Box 243, Reading RG6 6BB, UK, 8NOAA/
Pacific Marine Environmental Laboratory, 
7600 Sand Point Way NE, Seattle, Washington 
98115, USA, 9Institute for Atmospheric and 
Climate Science, ETH Zurich, 8092 Zurich, 
Switzerland, 10Walden, Widcombe Hill, Bath, 
BA2 6ED, UK, 11Max Planck Institute for 
Meteorology, Bundesstraße 53, D-20146 
Hamburg, Germany, 12CICERO, P.O. Box 1129 
Blindern, N-0318 Oslo, Norway, 13NASA 
Goddard Institute for Space Studies, 2880 
Broadway, New York, New York 10025, USA, 
14Department of Physics, University of Oxford, 
Parks Road,  
Oxford OX1 3PU, UK.  
*e-mail: alexander.otto@ouce.ox.ac.uk

Published online: 19 May 2013

© 2013 Macmillan Publishers Limited. All rights reserved

Equilibrium climate sensitivity [°C]

Pr
ob

a
bi

lit
y 

d
en

sit
y 

[1
/°

C
] Otto et al. ECS



0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

Estimates of climate sensitivity

X - 12 ARMOUR ET AL.: SEA ICE REVERSIBILITY

ECS = �R2⇥/�obs = R2⇥
Tobs

Robs �Hobs

(63)

ECS = �F2⇥

�

=
F2⇥Tobs

Fobs �Qobs

(64)

�R ⇡ 4 Wm�2 (65)

�H ⇡ 0.7 Wm�2 (66)

�T ⇡ 0.8�C = 0.8 K (67)

�2⇥/�eff (68)

��T (69)

�Q = ��T +�R (70)

�T2⇥ = ��R2⇥

�
=

�Tobs

�Qobs ��Robs

�R2⇥ (71)

�T2⇥ =
�Tobs

�Qobs ��Robs

�R2⇥ (72)

D R A F T December 8, 2017, 5:53pm D R A F T

NATURE GEOSCIENCE | ADVANCE ONLINE PUBLICATION | www.nature.com/naturegeoscience 1

correspondence

To the Editor — The rate of global 
mean warming has been lower over the 
past decade than previously. It has been 
argued1–5 that this observation might 
require a downwards revision of estimates 
of equilibrium climate sensitivity, that is, 
the long-term (equilibrium) temperature 
response to a doubling of atmospheric 
CO2 concentrations. Using up-to-date data 
on radiative forcing, global mean surface 
temperature and total heat uptake in the 
Earth system, we find that the global energy 
budget6 implies a range of values for the 
equilibrium climate sensitivity that is in 
agreement with earlier estimates, within 
the limits of uncertainty. The energy 
budget of the most recent decade does, 
however, indicate a lower range of values 
for the more policy-relevant7 transient 
climate response (the temperature increase 
at the point of doubling of the atmospheric 
CO2 concentration following a linear ramp 
of increasing greenhouse gas forcing) than 
the range obtained by either analysing the 
energy budget of earlier decades or current 
climate model simulations8.

The response of the climate system 
to rising greenhouse gas levels is often 
summarized in terms of the equilibrium 
climate sensitivity (ECS) or the transient 
climate response (TCR). Both quantities 
are related to the global mean temperature 
change9 ΔT, the radiative forcing change 
ΔF, and the change in the rate of the total 
increase in Earth system heat content ΔQ 
(see Supplementary Section S1), by the 
global energy budget:

(1)=ECS
F2x ΔT

ΔF–ΔQ

(2)=TCR
F2x ΔT

ΔF

where F2x is the forcing due to doubling 
atmospheric CO2 concentrations. We use 
a value of F2x of 3.44 W m–2 (with a 5–95% 
confidence interval of ±10%) from ref. 10. 
Using a higher estimate11 of 3.7 W m–2  
would shift up our estimated ranges for 
ECS and TCR, but only by about 0.1 K (see 
Supplement Section S2). Both equations (1) 
and (2) assume constant linear feedbacks 
and (2) further assumes that the ratio of 

ΔQ to ΔT for the observed period is the 
same as that at year 70 of a simulation in 
which atmospheric CO2 levels increase at 
1% per year6,12, which is approximately 
the case over the past few decades if we 
exclude periods strongly affected by 
volcanic eruptions (see Supplementary 
Fig. S2). Equation (1) provides a lower 
bound to the fully equilibrated sensitivity, 
because delayed ocean warming at high 
latitudes can mask the impact of local 
positive feedbacks13.

For ΔT, we use the HadCRUT4 
ensemble data set of surface temperatures 
averaged globally and by decade 
(Supplementary Fig. S1). For ΔQ, we 
derive annual estimates of the change in 
total heat content of the Earth system for 
the period 1970 to 2009, by combining 
data-based estimates for all the main 
components of the Earth system (ocean, 

continent, ice and atmosphere); the ocean 
component dominates the heat uptake 
(see Supplementary Section S1). For ΔF, 
we use the multi-model average of the 
CMIP5 ensemble of climate simulations10 
with emissions that follow a medium-to-
low representative concentration pathway 
(RCP4.5). We include the historic record 
from 1850–2005 and the RCP4.5 scenario 
values from 2006–2010, scaled to match 
an ensemble of possible forcing estimates 
for 2010 (see Supplementary Section S1) 
to adjust for fast feedbacks and capture 
uncertainties.

The most likely value of equilibrium 
climate sensitivity based on the energy 
budget of the most recent decade is 2.0 °C, 
with a 5–95% confidence interval of 
1.2–3.9 °C (dark red, Fig. 1a), compared 
with the 1970–2009 estimate of 1.9 °C 
(0.9–5.0 °C; grey, Fig. 1a). Including the 
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Figure 1 | Observations of the global energy budget and their implications. Observations of the global 
mean temperature change plotted against change in forcing minus heat uptake (ΔF–ΔQ) for the 
equilibrium climate sensitivity (ECS) (a) and against ΔF for the transient climate response (TCR) (b), 
for each of the four decades 1970s, 1980s, 1990s and 2000s and for the 40-year period 1970–2009. 
Ellipses represent likelihood contours enclosing 66% two-dimensional confidence regions; best-
fit points of maximum likelihood are indicated by the circles; and the curved thick and thin lines 
represent the 17–83% and 5–95% confidence intervals of the resulting one-dimensional likelihood 
profile in ECS (or TCR), respectively. All time periods are referenced to 1860–1879, including a small 
correction in ΔQ to account for disequilibrium in this reference period14. Straight contours show iso-
lines of ECS (a) and TCR (b), calculated using a best-fit value of F2x of 3.44 W m–2 (also adjusted for 
fast feedbacks)10. Uncertainty in F2x is assumed to be correlated with forcing uncertainty in long-lived 
greenhouse gases10. To avoid dependence on previous assumptions16, we report results as likelihood-
based confidence intervals.
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period from 2000 to 2009 into the 40-year 
1970–2009 period delivers a finite upper 
boundary, in contrast with earlier estimates 
calculated using the same method14. The 
range derived from the 2000s overlaps 
with estimates from earlier decades and 
with the range of ECS values from current 
climate models10 (ECS values in the CMIP5 
ensemble13 are 2.2–4.7 °C), although it 
is moved slightly towards lower values. 
Observations of the energy budget alone 
do not rule out an ECS value below 2 °C, 
but they do rule out an ECS below 1.2 °C 
with 95% confidence. The upper boundary 
is lowered slightly, but is also very sensitive 
to assumptions made in the evaluation 
process (see Supplementary Section 
S2). Uncertainties include observational 
errors and internal variability estimated 
from control simulations with general 
circulation models.

The best estimate of TCR based on 
observations of the most recent decade is 
1.3 °C (0.9–2.0 °C; dark red, Fig. 1b). This 
is lower than estimates derived from data 
of the 1990s (1.6 °C (0.9–3.1 °C); yellow, 
Fig. 1b) or for the 1970–2009 period as a 
whole (1.4 °C (0.7–2.5 °C); grey, Fig. 1b). 
However, because the most recent estimate 
has the strongest forcing and is less affected 
by the eruption of Mount Pinatubo in 1991, 
it is arguably the most reliable. Our results 
match those of other observation-based 
studies15 and suggest that the TCRs of some 
of the models in the CMIP5 ensemble10 
with the strongest climate response to 
increases in atmospheric CO2 levels may 
be inconsistent with recent observations — 
even though their ECS values are consistent 
and they agree well with the observed 
climatology. Most of the climate models 
of the CMIP5 ensemble are, however, 
consistent with the observations used here 
in terms of both ECS and TCR. We note, 
too, that caution is required in interpreting 

any short period, especially a recent one for 
which details of forcing and energy storage 
inventories are still relatively unsettled: 
both could make significant changes to the 
energy budget. The estimates of the effective 
radiative forcing by aerosols in particular 
vary strongly between model-based studies 
and satellite data. The satellite data are still 
subject to biases and provide only relatively 
weak constraints (see Supplementary 
Section S2 for a sensitivity study). ❐
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To the Editor — The rate of global 
mean warming has been lower over the 
past decade than previously. It has been 
argued1–5 that this observation might 
require a downwards revision of estimates 
of equilibrium climate sensitivity, that is, 
the long-term (equilibrium) temperature 
response to a doubling of atmospheric 
CO2 concentrations. Using up-to-date data 
on radiative forcing, global mean surface 
temperature and total heat uptake in the 
Earth system, we find that the global energy 
budget6 implies a range of values for the 
equilibrium climate sensitivity that is in 
agreement with earlier estimates, within 
the limits of uncertainty. The energy 
budget of the most recent decade does, 
however, indicate a lower range of values 
for the more policy-relevant7 transient 
climate response (the temperature increase 
at the point of doubling of the atmospheric 
CO2 concentration following a linear ramp 
of increasing greenhouse gas forcing) than 
the range obtained by either analysing the 
energy budget of earlier decades or current 
climate model simulations8.

The response of the climate system 
to rising greenhouse gas levels is often 
summarized in terms of the equilibrium 
climate sensitivity (ECS) or the transient 
climate response (TCR). Both quantities 
are related to the global mean temperature 
change9 ΔT, the radiative forcing change 
ΔF, and the change in the rate of the total 
increase in Earth system heat content ΔQ 
(see Supplementary Section S1), by the 
global energy budget:

(1)=ECS
F2x ΔT

ΔF–ΔQ

(2)=TCR
F2x ΔT

ΔF

where F2x is the forcing due to doubling 
atmospheric CO2 concentrations. We use 
a value of F2x of 3.44 W m–2 (with a 5–95% 
confidence interval of ±10%) from ref. 10. 
Using a higher estimate11 of 3.7 W m–2  
would shift up our estimated ranges for 
ECS and TCR, but only by about 0.1 K (see 
Supplement Section S2). Both equations (1) 
and (2) assume constant linear feedbacks 
and (2) further assumes that the ratio of 

ΔQ to ΔT for the observed period is the 
same as that at year 70 of a simulation in 
which atmospheric CO2 levels increase at 
1% per year6,12, which is approximately 
the case over the past few decades if we 
exclude periods strongly affected by 
volcanic eruptions (see Supplementary 
Fig. S2). Equation (1) provides a lower 
bound to the fully equilibrated sensitivity, 
because delayed ocean warming at high 
latitudes can mask the impact of local 
positive feedbacks13.

For ΔT, we use the HadCRUT4 
ensemble data set of surface temperatures 
averaged globally and by decade 
(Supplementary Fig. S1). For ΔQ, we 
derive annual estimates of the change in 
total heat content of the Earth system for 
the period 1970 to 2009, by combining 
data-based estimates for all the main 
components of the Earth system (ocean, 

continent, ice and atmosphere); the ocean 
component dominates the heat uptake 
(see Supplementary Section S1). For ΔF, 
we use the multi-model average of the 
CMIP5 ensemble of climate simulations10 
with emissions that follow a medium-to-
low representative concentration pathway 
(RCP4.5). We include the historic record 
from 1850–2005 and the RCP4.5 scenario 
values from 2006–2010, scaled to match 
an ensemble of possible forcing estimates 
for 2010 (see Supplementary Section S1) 
to adjust for fast feedbacks and capture 
uncertainties.

The most likely value of equilibrium 
climate sensitivity based on the energy 
budget of the most recent decade is 2.0 °C, 
with a 5–95% confidence interval of 
1.2–3.9 °C (dark red, Fig. 1a), compared 
with the 1970–2009 estimate of 1.9 °C 
(0.9–5.0 °C; grey, Fig. 1a). Including the 
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Figure 1 | Observations of the global energy budget and their implications. Observations of the global 
mean temperature change plotted against change in forcing minus heat uptake (ΔF–ΔQ) for the 
equilibrium climate sensitivity (ECS) (a) and against ΔF for the transient climate response (TCR) (b), 
for each of the four decades 1970s, 1980s, 1990s and 2000s and for the 40-year period 1970–2009. 
Ellipses represent likelihood contours enclosing 66% two-dimensional confidence regions; best-
fit points of maximum likelihood are indicated by the circles; and the curved thick and thin lines 
represent the 17–83% and 5–95% confidence intervals of the resulting one-dimensional likelihood 
profile in ECS (or TCR), respectively. All time periods are referenced to 1860–1879, including a small 
correction in ΔQ to account for disequilibrium in this reference period14. Straight contours show iso-
lines of ECS (a) and TCR (b), calculated using a best-fit value of F2x of 3.44 W m–2 (also adjusted for 
fast feedbacks)10. Uncertainty in F2x is assumed to be correlated with forcing uncertainty in long-lived 
greenhouse gases10. To avoid dependence on previous assumptions16, we report results as likelihood-
based confidence intervals.
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period from 2000 to 2009 into the 40-year 
1970–2009 period delivers a finite upper 
boundary, in contrast with earlier estimates 
calculated using the same method14. The 
range derived from the 2000s overlaps 
with estimates from earlier decades and 
with the range of ECS values from current 
climate models10 (ECS values in the CMIP5 
ensemble13 are 2.2–4.7 °C), although it 
is moved slightly towards lower values. 
Observations of the energy budget alone 
do not rule out an ECS value below 2 °C, 
but they do rule out an ECS below 1.2 °C 
with 95% confidence. The upper boundary 
is lowered slightly, but is also very sensitive 
to assumptions made in the evaluation 
process (see Supplementary Section 
S2). Uncertainties include observational 
errors and internal variability estimated 
from control simulations with general 
circulation models.

The best estimate of TCR based on 
observations of the most recent decade is 
1.3 °C (0.9–2.0 °C; dark red, Fig. 1b). This 
is lower than estimates derived from data 
of the 1990s (1.6 °C (0.9–3.1 °C); yellow, 
Fig. 1b) or for the 1970–2009 period as a 
whole (1.4 °C (0.7–2.5 °C); grey, Fig. 1b). 
However, because the most recent estimate 
has the strongest forcing and is less affected 
by the eruption of Mount Pinatubo in 1991, 
it is arguably the most reliable. Our results 
match those of other observation-based 
studies15 and suggest that the TCRs of some 
of the models in the CMIP5 ensemble10 
with the strongest climate response to 
increases in atmospheric CO2 levels may 
be inconsistent with recent observations — 
even though their ECS values are consistent 
and they agree well with the observed 
climatology. Most of the climate models 
of the CMIP5 ensemble are, however, 
consistent with the observations used here 
in terms of both ECS and TCR. We note, 
too, that caution is required in interpreting 

any short period, especially a recent one for 
which details of forcing and energy storage 
inventories are still relatively unsettled: 
both could make significant changes to the 
energy budget. The estimates of the effective 
radiative forcing by aerosols in particular 
vary strongly between model-based studies 
and satellite data. The satellite data are still 
subject to biases and provide only relatively 
weak constraints (see Supplementary 
Section S2 for a sensitivity study). ❐
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Estimates of climate sensitivity

§ Global energy budget constraints produce 
estimates of ECS that are quite a bit lower 
than ECS simulated by CMIP5 models

§ Are the models overly sensitive?
§ Or is something else going on…?
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Like-with-like comparisons of climate sensitivity

§ Emerging consensus: model-observational 
comparisons must be made in a like-with-like
way
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Like-with-like comparisons of climate sensitivity

§ Emerging consensus: model-observational 
comparisons must be made in a like-with-like
way, accounting for possibility that:

1) Feedbacks (  ) vary over time as the 
spatial pattern of warming evolves 
(Armour 2017; Proistosescu & Huybers 2017)
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Like-with-like comparisons of climate sensitivity

§ Emerging consensus: model-observational 
comparisons must be made in a like-with-like
way, accounting for possibility that:

1) Feedbacks (  ) vary over time as the 
spatial pattern of warming evolves 
(Armour 2017; Proistosescu & Huybers 2017)

2) Feedbacks affected by the “efficacy” 
of non-CO2 forcings (Shindell 2014; 
Kummer & Dessler 2014; Marvel et al. 2015)
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Like-with-like comparisons of climate sensitivity

§ Emerging consensus: model-observational 
comparisons must be made in a like-with-like
way, accounting for possibility that:

1) Feedbacks (  ) vary over time as the 
spatial pattern of warming evolves 
(Armour 2017; Proistosescu & Huybers 2017)

2) Feedbacks affected by the “efficacy” 
of non-CO2 forcings (Shindell 2014; 
Kummer & Dessler 2014; Marvel et al. 2015)

3) Feedbacks depend on natural 
variability in the pattern of warming
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scattering–absorption term [;0.3Wm22 in the CMIP5
multimodel mean, with a range (not shown) from ;0.0
to 1.0Wm22 across models], which we interpret as the
instantaneous SW absorption component of the 4xCO2

effective radiative forcing.

3. An evolving pattern of surface warming in
CMIP5 models

This section considers how an evolving pattern of
surface warming may drive the change in feedback
strengths identified in section 2. Figure 5 shows the

CMIP5 AOGCM-mean surface warming pattern [de-
termined fromOLS regression of localDT against global
DT (i.e., it is dimensionless: in KK21) and is unity in the
global mean] for the first 20 yr (Fig. 5a) and the re-
maining years (Fig. 5b). Figure 5c shows the change in
pattern (i.e., Fig. 5b2 Fig. 5a, which must be zero in the
global mean by construction). The zonal-mean surface
warming patterns for the individual models are shown in
Figs. 5d–f. Note that, as with Fig. 4, the BCC and BNU
models are excluded.
A large Northern Hemisphere (NH) polar amplifica-

tion is well established early on in the simulation in all

FIG. 5. Geographical distribution of the pattern of surface air temperature change for (a) years 1–20, (b) years 21–
150, and (c) their difference for the CMIP5 AOGCMmean. Plots show the slope of the linear regression of local DT
against global DT for the relevant time periods and are dimensionless. By construction, the global mean of (a),(b) is
unity, while (c) is zero. (d)–(f) The zonal-mean patterns (red lines), where thin lines are individual CMIP5 models.
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CMIP5 response to 4×CO2 (Andrews et al. 2015)

1) Feedbacks vary as the pattern of warming evolves
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CMIP5 response to 4×CO2 (Andrews et al. 2015)

1) Feedbacks vary as the pattern of warming evolves

What is the radiative response to this 
change in warming pattern?
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CMIP5 response to 4×CO2 (Andrews et al. 2015)

1) Feedbacks vary as the pattern of warming evolves
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warming in NCAR’s CAM4 (Dong et al., in preparation)

see also Andrews and Webb 2017; Zhou et al. 2016;
Zhou et al. 2017
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followed by Gregory et al. (2004) and Andrews et al.
(2012a); Eq. (1) requires that a, 0 for the system to be
stable under perturbations.
The paradigm was first applied to equilibrium states,

such as CO2 doubling (2xCO2) scenarios that use an
atmospheric general circulation model (AGCM) cou-
pled to a simple thermodynamic mixed layer (‘‘slab’’)
oceanmodel (i.e., with prescribed ocean heat transport).
More recently, a constant a has been found to be an
excellent approximation under this idealized experi-
mental design during transient climate change, as dem-
onstrated by a linear dependence of N on DT in 2xCO2

experiments (e.g., Gregory and Webb 2008).
In contrast to idealized model studies of climate sen-

sitivity, real-world climate forcing and change are time
dependent and involve nonlinear coupled atmosphere–
ocean processes and heat exchanges between the ocean

mixed layer and deep ocean that require an AOGCM
(i.e., with a 3D dynamic ocean model) to simulate. The
linearity of Eq. (1) is found to be less robust in AOGCM
climate change simulations (see Fig. 1; Gregory et al.
2004; Andrews et al. 2012a; Armour et al. 2013; Geoffroy
et al. 2013; Block and Mauritsen 2013), which we in-
terpret as a nonconstant a, though other interpretations
can be drawn (see below). Nonetheless, we note that
linearity is a surprisingly good approximation for some
AOGCMs (e.g., Danabasoglu and Gent 2009; Andrews
et al. 2012a).
Recent work describing the time-dependent response

of AOGCMs has focused on developing new conceptual
frameworks fitted to AOGCM results. Winton et al.
(2010), Held et al. (2010), and Geoffroy et al. (2013)
used a two-layer ocean model (approximating a mixed
layer and deep-ocean response) and an ‘‘ocean heat

FIG. 1. Abrupt 4xCO2 Gregory plot (N as a function of DT ) for (a) HadCM3, (b) HadGEM2-ES, and (c) the
CMIP5 AOGCM mean. Lines show regression fits to the global annual-mean data points for years 1–20 (blue) and
subsequent years (red). The plots show global annual-mean data for the first 20 yr, followed by decadal means. The
slope and N intercept (DT 5 0) give the feedback parameter (a; Wm22K21) and effective radiative forcing
(F; Wm22), respectively. The DT intercept (N 5 0) estimates the equilibrium response assuming the feedback
strengths remain unchanged. The blue dotted line represents the path the AOGCMwould have taken to equilibrium
if it had maintained the feedback strengths as simulated during the early years of the experiment. (d) Comparison of
the net feedback parameter (a) diagnosed from the early (years 1–20) and subsequent (years 21–150) years. The
length (blue) and width (red) of the symbols in (d) represent their 95% confidence intervals (estimated by 1.96
standard deviations from the regression).
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scattering–absorption term [;0.3Wm22 in the CMIP5
multimodel mean, with a range (not shown) from ;0.0
to 1.0Wm22 across models], which we interpret as the
instantaneous SW absorption component of the 4xCO2

effective radiative forcing.

3. An evolving pattern of surface warming in
CMIP5 models

This section considers how an evolving pattern of
surface warming may drive the change in feedback
strengths identified in section 2. Figure 5 shows the

CMIP5 AOGCM-mean surface warming pattern [de-
termined fromOLS regression of localDT against global
DT (i.e., it is dimensionless: in KK21) and is unity in the
global mean] for the first 20 yr (Fig. 5a) and the re-
maining years (Fig. 5b). Figure 5c shows the change in
pattern (i.e., Fig. 5b2 Fig. 5a, which must be zero in the
global mean by construction). The zonal-mean surface
warming patterns for the individual models are shown in
Figs. 5d–f. Note that, as with Fig. 4, the BCC and BNU
models are excluded.
A large Northern Hemisphere (NH) polar amplifica-

tion is well established early on in the simulation in all

FIG. 5. Geographical distribution of the pattern of surface air temperature change for (a) years 1–20, (b) years 21–
150, and (c) their difference for the CMIP5 AOGCMmean. Plots show the slope of the linear regression of local DT
against global DT for the relevant time periods and are dimensionless. By construction, the global mean of (a),(b) is
unity, while (c) is zero. (d)–(f) The zonal-mean patterns (red lines), where thin lines are individual CMIP5 models.
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CMIP5 response to 4×CO2 (Andrews et al. 2015)

1) Feedbacks vary as the pattern of warming evolves
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§ Feedbacks under historical forcing may differ 
from those under CO2 forcing alone (Shindell 2014; 
Marvel et al. 2015)
§ Radiative Forcing Model Intercomparison Project 
(RFMIP; Pincus et al. 2016) protocol produces 
coupled model estimates of forcing and 
feedbacks over historical period
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§ Feedbacks under historical forcing may differ 
from those under CO2 forcing alone (Shindell 2014; 
Marvel et al. 2015)
§ Radiative Forcing Model Intercomparison Project 
(RFMIP; Pincus et al. 2016) protocol produces 
coupled model estimates of forcing and 
feedbacks over historical period

2) Feedbacks depend on the type of radiative forcing
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3) Feedbacks vary due to internal climate variability
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§ Feedbacks under historical forcing can vary due 
to only internal climate variability (Dessler et al. 2018)

Historical simulations of NCAR’s CESM1-CAM5 
Large Ensemble
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§ Feedbacks under historical forcing can vary due 
to only internal climate variability (Dessler et al. 2018)
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FIG. 4. Global maps of historical (1979–2012) boreal winter (DJF) surface air temperature trends for each 
of the 30 individual CESM-LE members, the CESM-LE ensemble mean (denoted EM), and observations 
(denoted OBS based on GISTEMP; Hansen et al. 2010).
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of the 30 individual CESM-LE members, the CESM-LE ensemble mean (denoted EM), and observations 
(denoted OBS based on GISTEMP; Hansen et al. 2010).
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Kay et al 
(2015)

§ Feedbacks under historical forcing can vary due 
to only internal climate variability (Dessler et al. 2018)
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§ Feedbacks under historical forcing can vary due 
to only internal climate variability (Dessler et al. 2018)
§ Key question: what global feedback (and ICS) 
has the observed warming pattern engendered?

§ absent this knowledge, this internal 
variability uncertainty is swamped by the 
forcing uncertainty
§ can be thought of as uncertainty that 
would remain given perfect observations of 
forcing, heat uptake, etc

Historical simulations of NCAR’s CESM1-CAM5 
Large Ensemble



AMIP II boundary conditions (Hurrell et al. 2008) Global feedback response to localized patches of 
warming in NCAR’s CAM4 (Dong et al., in preparation)

-15 -10 -5 0 5 10 15

Global radiative feedback

3) Feedbacks vary due to internal climate variability

-2 -1 0 1 2

Observed warming pattern

[Wm-2K-1]
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§ Prescribed sea-surface temperature (SST) 
simulations produce the same feedbacks as are 
induced by climate forcings (Haugstad et al. 2017)

§ Cloud Feedback Model Intercomparison Project 
(CFMIP; Webb et al. 2017) protocol produces 
estimates of feedbacks associated with observed 
warming pattern
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§ Prescribed sea-surface temperature (SST) 
simulations produce the same feedbacks as are 
induced by climate forcings (Haugstad et al. 2017)

§ Cloud Feedback Model Intercomparison Project 
(CFMIP; Webb et al. 2017) protocol produces 
estimates of feedbacks associated with observed 
warming pattern
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Green’s function



3) Feedbacks vary due to internal climate variability

Global near-surface air temperature, 
TOA radiation and global radiative 
feedback well-reconstructed by 
Green’s function

What regions contribute most to the 
increasingly negative radiative 
feedback in recent decades?
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3) Feedbacks vary due to internal climate variability

Green’s functions tell you which 
regions contributed most to global 
TOA radiation (Q) or surface 
warming (Ts)
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This quantity equals zero in the 
global mean (by definition) but tells 
you what regions most contribute to 
global feedback changes due to 
regional radiative response to 
warming being different from the 
global feedback

West Pacific warming (negative 
feedback) wins out over all other 
regions (generally positive 
feedbacks), small contribution from 
Southern Ocean cooling
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§ Prescribed sea-surface temperature (SST) 
simulations produce the same feedbacks as are 
induced by climate forcings (Haugstad et al. 2017)

§ Cloud Feedback Model Intercomparison Project 
(CFMIP; Webb et al. 2017) protocol produces 
estimates of feedbacks associated with observed 
warming pattern
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Prescribed observed SST simulations with CAM4, CAM5, 
HadGEM2, HadAM3, ECHAM6, AM2.1, AM3, AM4 (Yue 
Dong, Malte Stuecker, Cristi Proistosescu, Tim Andrews, Jonathan 
Gregory, Thorsten Mauritsen, Levi Silvers & David Paynter)
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CMIP5 ICS w/ 
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§ Prescribed sea-surface temperature (SST) 
simulations produce the same feedbacks as are 
induced by climate forcings (Haugstad et al. 2017)

§ Cloud Feedback Model Intercomparison Project 
(CFMIP; Webb et al. 2017) protocol produces 
estimates of feedbacks associated with observed 
warming pattern
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§ Apparent offset between global energy budget constraints and models stems 
from sloppy comparison between observation-based estimates of ICS and 
modeled estimates of ECS
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§ Apparent offset between global energy budget constraints and models stems 
from sloppy comparison between observation-based estimates of ICS and 
modeled estimates of ECS

§ Accounting for feedback dependence on evolving pattern of CO2-forced 
warming (slow warming of E. Pacific and Southern Ocean) gives model values 
of ICS that are in agreement with observation-based values (though still high)



Parting thoughts

0 1 2 3 4 5 6
0

2

4

6

8

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8
0 1 2 3 4 5 6

0

2

4

6

8

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

ICS or ECS [°C]

Pr
ob

ab
ilit

y 
de

ns
ity

 [1
/°

C
]

Pr
ob

ab
ilit

y 
de

ns
ity

 [1
/°

C
]

Pr
ob

ab
ilit

y 
de

ns
ity

 [1
/°

C
]

§ Apparent offset between global energy budget constraints and models stems 
from sloppy comparison between observation-based estimates of ICS and 
modeled estimates of ECS

§ Accounting for feedback dependence on evolving pattern of CO2-forced 
warming (slow warming of E. Pacific and Southern Ocean) gives model values 
of ICS that are in agreement with observation-based values (though still high)

§ Accounting for the observed pattern of warming being pretty odd gives 
model values of ICS that are in good agreement
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§ Apparent offset between global energy budget constraints and models stems 
from sloppy comparison between observation-based estimates of ICS and 
modeled estimates of ECS

§ Accounting for feedback dependence on evolving pattern of CO2-forced 
warming (slow warming of E. Pacific and Southern Ocean) gives model values 
of ICS that are in agreement with observation-based values (though still high)

§ Accounting for the observed pattern of warming being pretty odd gives 
model values of ICS that are in good agreement

§ How can ECS be constrained from observations, given that the observational 
record has coincided with a particularly strange pattern of warming? We are 
unsure if future warming patterns predicted by models are realistic given that 
they fail to get the observed warming pattern right
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§ Apparent offset between global energy budget constraints and models stems 
from sloppy comparison between observation-based estimates of ICS and 
modeled estimates of ECS

§ Accounting for feedback dependence on evolving pattern of CO2-forced 
warming (slow warming of E. Pacific and Southern Ocean) gives model values 
of ICS that are in agreement with observation-based values (though still high)

§ Accounting for the observed pattern of warming being pretty odd gives 
model values of ICS that are in good agreement

§ How can ECS be constrained from observations, given that the observational 
record has coincided with a particularly strange pattern of warming? We are 
unsure if future warming patterns predicted by models are realistic given that 
they fail to get the observed warming pattern right

§ How much of the intermodel spread in ECS might be due cloud response to 
different SST patterns, rather than different cloud physics/parameterizations?

0 1 2 3 4 5 6
0

2

4

6

8





An aside: does ECS or ICS matter more for transient warming?
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§ Transient warming is weekly correlated with ECS



§ Transient warming is weekly correlated with ECS

An aside: does ECS or ICS matter more for transient warming?
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§ Transient warming is highly correlated with ICS

TCR = warming at year 70, the time of CO2
doubling under 1%/yr CO2 ramping



Like-with-like comparisons of climate sensitivity

§ Emerging consensus: model-observational 
comparisons must be made in a like-with-like
way, accounting for possibility that:

1) Feedbacks (  ) vary over time as the 
spatial pattern of warming evolves 
(Armour 2017; Proistosescu & Huybers 2017)

2) Feedbacks affected by the “efficacy” 
of non-CO2 forcings (Shindell 2014; 
Kummer & Dessler 2014; Marvel et al. 2015)

3) Feedbacks depend on natural 
variability in the pattern of warming

4) Different definitions of global-mean 
temperature used in models vs 
observations (Cowtan et al. 2015; 
Richardson et al. 2016)

X - 12 ARMOUR ET AL.: SEA ICE REVERSIBILITY
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(Armour 2017; see also Proistosescu & Huybers 2017)
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4) Sensitivity estimates depend on global temperature definition
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§ Global temperature record is a blend of SST over 
ocean, near-surface air temperature over land; 
lacks full global coverage
§ Global temperature in models is calculated as a 
full global average of near-surface air temperature

CMIP5 ICS w/ 
obs warming
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Prescribed observed SST simulations with CAM4, CAM5, 
HadGEM2, HadAM3, ECHAM6, AM2.1, AM3, AM4 (Yue 
Dong, Malte Stuecker, Cristi Proistosescu, Tim Andrews, Jonathan 
Gregory, Thorsten Mauritsen, Levi Silvers & David Paynter)
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4) Sensitivity estimates depend on global temperature definition
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§ Global temperature record is a blend of SST over 
ocean, near-surface air temperature over land; 
lacks full global coverage
§ Global temperature in models is calculated as a 
full global average of near-surface air temperature
§ Blending/masking models consistently with 
observations suggests an increase to Otto et al. ICS 
estimate (Richardson et al. 2016)
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Prescribed observed SST simulations with CAM4, CAM5, 
HadGEM2, HadAM3, ECHAM6, AM2.1, AM3, AM4 (Yue 
Dong, Malte Stuecker, Cristi Proistosescu, Tim Andrews, Jonathan 
Gregory, Thorsten Mauritsen, Levi Silvers & David Paynter)
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§ Apparent offset between global energy budget constraints and models stems 
from sloppy comparison between observation-based estimates of ICS and 
modeled estimates of ECS

§ Accounting for feedback dependence on evolving pattern of CO2-forced 
warming (slow warming of E. Pacific and Southern Ocean) gives model values 
of ICS that are in agreement with observation-based values (though still high)

§ Accounting for the observed pattern of warming being pretty odd gives 
model values of ICS that are in good agreement

§ Accounting for consistent global temperature definitions brings model ICS 
values to low end of observation-based ICS values
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